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STRESSES,VISCOSITY, AND SCALES IN MOLAR TRANSFER 

V. F. Potemkin UDC 532.526 

The article presents unified relations describing the profiles of molar stresses 
and viscosity. 

For the calculation of heac and mass transfer in engineering devices iC is indispensa- 
ble to know the distribution of molar stresses and viscosity in the turbulent boundary layer. 
However, to this day there is no unified relations describing the molar stress and viscosity 
profiles for complex flow conditions, e.g., in case of a rough surface, the entrance section 
of a channel, etc. [I]. 

It is known [i] that in the turbulent core of a two-dimensional steady turbulent bound- 
ary layer the terms of the stress tensor satisfy the inequality 

(1) 

For flow in the boundary layer on a plate, taking (i) into account, we represent uS a 
in the form 

~+ = U$2 -- ~. (2) 
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Fig. 1. Molar stress profiles in flow: a) in rectangular 
channels and pipes with smooth walls after [10,15] ; b) in 

rough pipe after [12]. (k + = 68.5; T~ = 0.46)~ 

+ a  
Here ~v is a damping factor which reduces Ov to a value at which (2) is fulfilled. 

Analogously 

In distinction to flow on a plate, turbulent flow in a chaunel (pipe) is characterized 
by interaction of the vortices forming at opposite walls. These vortices have predom/nantly 
opposite spins and are prone to merging. In case of such addltional interaction of vortices 

there are no grounds for assuming that expressions (2), (3) will change. As regards the rms 
pulsationof longltudlnal speed in the channel Ouc ~ we determine it in the following manner: 

In the  gene ra l  case  ~i = ~ i (K) ,  where K i s  a parameter  c h a r a c t e r i z i n g  the  change of  
p r o p e r t i e s  of  the  t u r b u l e n t  boundary l a y e r  when the  f low c o n d i t i o n s  become more complex. I t  
i s  obvious t h a t  the  l e f t - h a n d  and r i g h t - h a n d  s i d e s  of  e q u a l i t i e s  (2 ) - (5)  a re  equal  to  each 
other with an accuracy up to the unknown functions ~v(K), ~w(K), ~u(K), ~uc(K)o It follows 
from the assumption that relations (2)-(5) are universal that ~i also have to be unlversal 
functions of the turbulent boundary layer. 

In the model of molar transfer [2-9] the function T 6 was obtained which de~rmines the 
principal properties of the turbulent core of the boundary layer~ u " In~+/ (u~ - i). Here 
y~ = yu,/v, u 6 = u(y = ~). Therefore in the first approximation. 

Then 

where ~6 = 1- T 6. 

~ = ~= = ~ = ~.= = ~ .  

a+2 = =+/a6, 

.~+~ = = + / ~ ,  

=~ = ~ / ~ ,  

.+2 _+~ .4 
u'C ~ t  ItU 8,  

(6) 

(7) 

(8 )  

(9) 

(lO) 

Expressions (7)-(9) apply to external turbulent flow (flow on a plate), expressions 
(7), (8), and (i0) apply to internal flow (flow in a pipe or channel). 

In Fig. la, expressions (7), (8)p and (I0) are compared with the data of [10-15] for 
turbulent flow in a rectangular channel or pipe with smooth walls (Re~ ffi (15-125).10 s, ~6 " 
0.29-0.33). To make the comparison more convenient, the ordinate in Fig. la is represented 
in the form of ratios of the right-hand sides of formulas (7), (8), and (i0) to the left- 
hand sides. When the value of the ordinate is equal to unity, the experimental data coin- 
cide with the dependences given above, and when the value of the ordinate is, eog.p 1.5, 
the relative error amounts to 50g. The hatchedareas correspond to the scatter of the exper- 
imental data [10-15] in such representation. Theflgure shows that there is satisfactory 
correlation between the experimental data and the theoretical dependences (7), (8), and (10) 
in the range 0.i~y/8~0.8. 
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Fig. 2. Molar stress profiles in flow in the entrance section 
of a smooth pipe after [17]: i) x/d - 4.5; 2) 16.5; 3) 28.5; 

- " 4 )  40.5. 

Fig. 3. Molar viscosity profiles in flow in a smooth channel 
after [i0]: i, 3) 5) after [10];2, 4, 6) according to (16), 
and (18); i) 2) Re = 32,300; 3) 4)) 23)200; 5, 6) 13,800. 

;In models of thetransfer of kinetic energy, the following relation [16] is used for 
closing the differential equations: : " 

. . . .  ,#-=cz)-, (11) 

is the kinetic energy of the turbulent motion per unit Here e+ = e/u~; �9 - • (4 + 4 + ~b 
mass. 2 

In accordance with [16], the values of the "constant" C in (ii) lie most probably 
within the range 0,25-0.35, although the experimental data of [16] may indicate that ina 
turbulent boundary layer C may assume values from 0.1 to 0.5. The authors of [16] belleve 
that in the boundary layer C is "slightly smaller than 0.3." 

For external flow we have from (7)-(10) that 

1 1 (  1 + 1 1 ) (12) 

for inter~l flow C ~ ~ -~ +-~ ' 
, I + (  I , , +  1 1 ) (13) 

co  = . ,  . - T  + ~ �9 
Since it is known [2] that on a smooth wall and for zero pressure gradient with 6 + ~ - 

~6 ~ 1/3, we obtain) when subs~Itutlng this Value into (12) and (13)) that with turbulent 
flow on a plate C ffi 0.28, and in a channel C c ffi 0.23. 

A speclal feature of the experimental data presented in Fig. la is that an equal 
change of ~+, characteristic of internal fully developed flow 

~ + = I - - - L  (14) 
8 

o c c u r s ,  and the  v a l u e s  o f  ~6 a r e  c l o s e .  

When f low c o n d i t i o n s  a r e  complex,  the  change of  T § i n  the  boundary l ~ y e r  may d i f f e r  
from (14) ,  and ~6 may d e v i a t e  from the  d e g e n e r a t e d  v a l u e  1/3 wi th  l a r g e 6  +. However, r e l a -  
t i o n s  ( 7 ) - ( 1 0 ) ,  and c o n s e q u e n t l y  a l s o  (12) ,  (13 ) ,  a re  c o n s e r v a t i v e  to  such an e f f e c t .  

I t  f o l l o w s  from [12] t h a t w i t h  t u r b u l e n t  f low on a r o u g h s u r f a c e  in  a p ipe)  a t  l e a s t  
for the dimensionless height of roughness k+~lO0, the above theoretical dependences are 
valid. In Fig. ib relations (7)) (8))and (i0) are being compared with the experimental 
data of [12] (k + - 68.5, ~6 " 0.46). Their satisfactory correlation can be seen. From 
(13) C c - 0.12. 

Let us examine an example where, with fixed value of T6, the change of T+ in ~he layer 
differs substantially from (14). This is encountered, e.g.) in the initlal section of a 
channel. ~cordlng to the data of ~ [17], when x/d in a smooth plpe changes from 4.5 to 40.5) 
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$6 decreases from 0.35 to 0.31, i.e., the value of ~6 is almost constant. Here, x is =he 
distance from the entrance edge of the pipe, and d is its diameter. On the other hand, the 
distribution of T over the section does not correspond to (14). For instance, with x/d = 
4.5 and 2y/d = 0.2, T is approximately ten times smaller than its value for fully developed 
turbulent flow. However, in this case, too, the theoretical relations (7), (8), and (I0) 
are satisfactorily correlated with the experimental data, as can be seen from Fig. 2. 

On the basis of these examples we can convince ourselves that in (ii) C is not a con- 
stant to approximately 0.3 but is determined by relations (12) or (13) in dependence on the 
type of turbulent flow: internal or external. 

In accordance with the model of rolling of averaged vortices in the proper reference 
system [3], the expression for dimensionless turbulent viscosity has the form 

(15)  ,+  = u?l+ 
o r  

~+ = ~9+x+' (16) 

where 9 + = 9t/~; u~ = u~/u,; ~+ = ~u,/9; 9 t is turbulent viscosity; ~ is the radius of the 
averaged vortex; u Z is the speed of its rolling in the local base. 

In expression (16)+the fact is not taken into account that in the case of internal flow 
of a turbulent stream 9 at great distance from the wall tends to a constant value much 
larger than unity. This shortcoming of (16) can be eliminated if it is assumed that the 
quantlzatlon of the turbulent core according to averaged cores [3] has a definite physical 
meaning. 

The difference between internal flow, for which 9 + + const >>I for y + 6, and external 
flow (9 + + 0 for y § 6) consists, as mentioned before, in the additional interaction, 
chiefly by merger of the vortices forming on opposite surfaces. The physical condition of 
the interaction of such averaged vortices can be reduced to the geometric condition of their 
contiguity because vortices merge only if they are directly contiguous. The condition of 
contiguity of averaged vortices, described by the superposition of [3] and rolling over a 
moving surface that is at the distance y~ from the wall, has the form 

9~ + 2l+ = ~+. (17) 

Thus, in the first approximation with internal turbulent flow for y+~y~ 

~+ = ~+ (~) (18) 

In Fig. 3 the theoretical dependences (16) and (18) are being compared with the experi- 
mental data of [i0] whose authors studied fully developed flow in channels. There is sails- 
factory correlation between the experimental data and expressions (16) and (18). 

The authors of [2-4, 6, 9] present the limits of applicability and different variants 
of the derivation of the universal distribution of the mean longitudinal speed in the turbu- 
lent core of a turbulent boundary layer 

U = R. (19)  

We will show that if we know the logarithmic speed distribution [i] 

u+ = A l n y  + + B, (20)  

relation (19) can also be obtained on the basis of the following considerations. 

It was shown in [18] that when the simplest flow conditions obtain, A may change from 
2.1 to 3.0, according to published experimental data. The scatter of the values of B is even 
greater. According to the data of [ii], B ~.~4.0-6.0. The boundary of (20) is not determined 
either. Usually the range of applicability of the logarithmic law is taken to extend from 
the boundary of Karman's transition region of y ~ 0.16. On the other hand, a modification 
of (20) in the form of a law of defect of the speed 

is extended to the zone lying between the boundary of the transition region and y = ~. In 
[ii] it was pointed out that in consequence of the small value of the defect of speed with 
y/6 ~ 1 it is extremely difficult to determine B, experimentally. According to a very rough 
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approximation in [18], for flow in a circular pipe and in a flat channel B~ 0.4-0.8, for 
flow on a plate B, ~ 2.4. There are different view~ on how to explain the scatter of the 
values of A, B, Bx. According to Ill], A = A(Re), B = B(Re), B, = B,(Ke). In the review 
[18] the scatter of the values of the constants is explained by experimental errors, both 
in direct measurement and on account of excluding additional parameters affecting the func- 
tions A, B, B,. 

Since the values of A, B and the limits of (20) are not known with sufficient accuracy, 
we will assume that (20) is determinate in some range 

O <  60(~ <y~<~( / ) , -O< .~xx<x<~x~ ,  (22) 

where 6o(x), 6(x) are boundary functions: the upper and lower boundaries of the turbulent 
core; in particular, 6(x) is the thickness of the turbulent boundary layer. For the mean 
longitudinal speed u(x, y):u~(x) = u(x, d(x)), uo(x) = u(x, 6o(x)). Thenweobtain from (20) 
directly 

U--Uo ln(g/8o) 
- - =  (23) 
u~- -uo  l n ( 8 / ~  

Expression (23) has the important property that it does not depend on the replacement 
of scale 60 by some arbitrary y belonging to (22). In this sense all the y sets (22) are 
equivalent scales. In this sense all the y sets (22) are equivalent scales. In (20), y is 
the distance from the smooth wall. When the system of counting is shifted along the x axis 
coinciding with the wall, (23) does not change. However, (23) is not invarlant to the 
shifting of the system of counting along y. Since in the general case turbulent flow may 
occur not only on a smooth wall but also, e.g., on a rough wall, or in other cases without 
a wall, all the y from (22) are physically not distances from the wall but turbulent scales 
(or distances from an unreal (pseudosmooth) wall), provided the values of y ensure equality 
(23). 

We introduce the hypothesis that there exists a class of liquids for which with zero 
pressure gradient all y belonging to (22) and satisfying(23) are in the above-explalned 
sense equivalent to the viscous scale ~,(x) = y for u = u,(x); in particular, let ~,(x) = 
v/u,(x). Then by substituting 2, and u, for 60 and uo we obtain immediately from (23) that 

u+ -- 1 In 9 + ( 2 4 )  
u~ - -  1 In 8+ 

o r  1 
u+ = --- lny+ + 1, (25) 

~8 
where V 6 = ind+/(u~ -- i). The obtained relations (24), (25) are identical with (19). It 
was shown in [2] that (19), (24), (25) are determinate in the range R [0.7; i], which corre- 
sponds to the approximate range of change of y/6 from 0.05 to i, i.e., to the turbulent core. 

It was pointed out in [2-9] that equality (25) differs from (20) by the fact that it is 
physically real, i.e., it corresponds with sufficient accuracy to the known experimental 
data, does not contain empirical constants, describes a broad range of near-wall flows in- 
cludln 8 the effect of mass force fields nonisothermy, and other factors on the turbulent 
boundary layer, and greately simplifies engineering calculations of the averaged character- 
istics of the turbulent boundary layer. 

The authors of [3, 4, 8] present universal relations of molar heat and mass transfer. 
According to the model of superposition of vortices [3] whose rolling is examined in the 
proper system of counting, we can on the basis of the above-mentioned relations (taking into 
account that over the surface, on which the averaged vortex with radius I rolls, the flux 
density T of the impulse, the heat flux density q, the mass flux density j are transferred 
while the averaged vortex itself is characterized by the rolling speed uz, and also by 
the differences in temperature@z and concentration c~) obtain: 

= puluz, ( 2 6) 

q Prt = pulcp~t, (27) 

] Set = putc~. (28) 

Expressions (26)-(28) show the analogy between molar transfer of momentum, heat, and 
mass in the local base of the turbulent vortex. Their respective right-hand sides represent 
the flux densities of the impulse, heat, and mass, transferred by the averaged vortices 
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through rolling, whereas the left-hand sides are the true densities of the fluxes damped 
to No. I, the turbulent Prandtl number Prt, and the turbulent Schmidt number Sct. 

Thus the model of [2-9] made it possible to unify the molar stress and viscosity pro- 
files and some other relations correlating the averaged characteristic of the turbulent core 
of the turbulent boundary layer. 

NOTATION 

u, mean longitudinal speed, m/set; ~, kinematic viscosity, me/set; p, density, kg/mS; 
T, tangential stress, N/m2; u, = ~ dynamic speed, m/set; 6, thickness of the boundary 
layer, m; 6o, thickness of the lamlnary sublayer, m; y+ = yu,/~, dimensionless coordinate; 
u = u/u,, dimensionless speed; R = in y+/in6 +, generalized dimensionless distance from the 
wall; U = (u + -- l)/(u~ -- i), generalized dimensionless speed; ~ = in y+/(u + -- i), criterial 
function of the turbulent boundary layer; r e = W/~W, ~ = ~ dimensionless terms of the 
stress tensor; ~+ = 9t/~, dimensionless coefficient of viscosity; Prt, turbulent Prandtl 
numberi Sct, turbulent Schmidt number. Subscripts: *, 6, 0, flow parameters for y+ = l, 
y+ = 8~, and y+ = 8~, respectively; W, wall parameter; u, v, w, concerns longitudinal speed, 
and transverse speeds perpendicular and parallel to the wall, respectively; t, parameter of 
the turbulent core; l, parameter of the averaged vortex; k, internal flow. 
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